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Abstract 

Recent developments in the analysis of mathematical structure of the matching and 
characteristic polynomials of linear and cyclic periodic polymer networks are surveyed, 
especially on the newly found efficient algorithms and techniques for deriving their 
recursion relations and factorization expressions. Advantages and disadvantages of these 
two polynomials for manipulating large networks are compared and discussed with 
examples. Contrary to the case of singly connected polymer networks, only a few useful 
mathematical properties are shown to be found for doubly connected polymer networks. 
Linear and cyclic fence graphs are proposed to be defined instead of the conventional 
definitions of the so-called HOckel and M6bius ladder graphs, so that simpler and more 
useful mathematical relations hold for their matching polynomials. 

1. I n t roduc t ion  

Among the various counting polynomials, the characteristic Pc(x) and matching 
M'c(x ) polynomials have been considered to be very important, not only in their 
chemical applications but also in their mathematical properties [ 1-3] .  If one is going 
to analyze the chemical and physical properties of large conjugated compounds 
such as polycyclic benzenoid hydrocarbons and graphite, detailed knowledge of  
the mathematical properties of these counting polynomials for large networks is 
inevitably necessary, especially on their converging behavior toward infinitely large 
systems [4-8] .  

In this respect, Pc(x) has several advantages over M'c(x), such as in the 
computational labor and time. It is generally known that the number of  procedures 
for obtaining the solutions of a given Pc(x), or for diagonalizing the sectflar determinant, 
is roughly proportional to N 4, with N being the number of  the basis set, whereas 
for ~v[c(x ) the computational time increases with N!, leading to the so-called 
combinatorial explosion. Further, for the system with periodic symmetry one can 
factorize Pc(x) into the product of  the contributions of  the component units by the 
use of  the group-theoretical technique, which sometimes enables us to derive a 
general and closed form of  Pc(x) [5,6]. 

On the contrary, general procedures for deriving the recursion relations of  
M'c(x) of  a given periodic system are straightforward, while the recursion relations 
of  Pc(x) have been obtained only in the luckiest cases [9]. It might be needless to 
say that every coefficient, i.e. the non-adjacent number p(G, k), of  9 ~ ( x )  has direct 
graph-theoretical and combinatorial meanings [10, l 1]. 
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The crucial computational disadvantages of Me(x) come from the fact that 
owing to its combinatorial definition there is no known general and straightforward 
algorithm for obtaining a matrix expression to give Ma(x) for a polycyclic graph. 
In other words, for a given polycyclic graph G there is no guarantee for the existence 
of the associated graph whose characteristic polynomial exactly gives the target 
Ma(x) [12-14]. For several selected polycyclic graphs, the present author recently 
derived an algorithm for finding a set of associated graphs {Hi} with imaginary weights, 
so that the weighted mean of the Pn:(x)'s gives the MG(X) [15, 16]. Graovac et al. 
tried to explore the factorization of 91~lc(x ) for periodic polymer networks and were 
able to derive a useful algorithm for a singly connected polymer network [17, 18]. 
However, for more complicated cases, even for a doubly connected polymer network, 
almost nothing has been reported on the factorization of 5?¢la(x). Polansky tried to 
analyze the relation between the roots of the characteristic and matching polynomials 
of HiJckel- and M0bius-type polyacenes [ 19]. The purpose of the present paper is 
to survey the state-of-the-art and the possibility of a breakthrough of this problem. 

2. Definitions of periodic graphs and matching polynomial 

Let the characteristic and matching polynomials of a monomer unit M 
be denoted as M and 91,/, respectively. The definition of the matching polynomial 
is essentially the same as the Z-counting polynomial [10,11] by using the non- 
adjacent number p(G, k) [20-23]. Consider linear and cyclic n-mers, M. and °M., 
respectively, by joining consecutively the atoms r and s (~r )  of the neighboring 
units as in fig. 1. Sometimes, the graphs M n and °M. are called, respectively, fascia- 

Mn 

°Mn 

MI=M 

SI=S 

RI=R 

QI Q 
°M1 =° M 

Fig. 1. Linear and cyclic polymers M. and °M. composed of 
monomer units M, together with its subgraphs R, S and Q. 
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and rotagraphs [24]. Let the polynomials M 1 be simply denoted as M. The subgraphs 
R, S, and Q of M are defined, respectively, as M @ r, M @ s, and M @ (r, s) [25]. 
The notation M @ r means the subgraph of M obtained by deletion of r and all the 
lines adjacent to r. 

3. New techniques for obtaining the recursion relations of counting polynomials 

Recently, various techniques for obtaining the recursion relations of Pc(x) 
and Mo(x) have been proposed, such as the operator technique [9], transfer 
matrix [26], and pruning method [27]. Here, the former two methods will be explained. 

3.1. 

as [9] 

OPERATOR TECHNIQUE 

Define the step-up operator O to shift the counting polynomial F,, up to F,, + 

0 ~ = ~+1 .  (1) 

For the time being, let us consider that F.  is a matching polynomial. Although there 
is no guarantee for all the family of polynomials related to M_., namely, R,,, S,,, 
and Q. ,  to obey the same operator O, let us dare to assume eq. (1) for all of them. 
Then, as will be clear from fig. 2, we obtain the following pair of recursion relations 
for M,, and S.: 

which 

M~ = MM~_I-  RS.-I ,  

Sn = S M~_I-  QS._I, 

can be transformed into the operator expression as 

( 0  - M ) M .  + R S .  = O, 

- S M .  + (@ + Q)  S . = O .  

(2) 

(3) 

In order for M~ and Sn to be non-trivial, the following coefficient determinant 
derived from eq. (3) should be fulfilled: 

A = 
@ - M  R 

- S  @ + Q  

= @2_ ( M -  Q)@ + ( R S -  M Q )  = o. (4) 



292 H. Hosoya, Polynomials of polymer networks 

Mn 

M ( S )  Mn_ 1 

- + - . . . W - +  .... 

R (Q) Sn-1 

Fig. 2. Recursion relation (2) for the matching and 
characteristic polynomials of M n and S~ (dotted). 

Then, application of this operator polynomial A to Yffn -2 gives the desired recursion 
relation 

M. = ( M -  Q ) M . _ I  - ( R S -  MQ) Mn_2, (5) 

which is shown to be fulfilled also by Rn,  S., and Q . .  
Let us define the canonical operator polynomial F(O,  x) to be the operator 

polynomial of the least order for describing the recursion relation of the counting 
polynomial of a given series of  graphs. In this case, the coefficient determinant A 
is found to be identical to F(Ù,  x). 

For a later purpose, let us rewrite eq. (5) as 

= AM _I- BM _2, (6) 

with A = M -  Qand  B = R S -  M Q. 
Note that A is nothing but the matching polynomial of the cyclic monomer 

of °M n, namely, A --- ° M  1 = °M. Further, °Mn is also shown to obey the same 
recursion relation as M. ,  

= ( A M , , - 1 -  BM,,_2)  - ( R 5 . _ 1  - QO..._1) 

= A M , , _ I -  B M ~ _ 2 -  R ( M S n _ 2 - S Q . _ 2 )  + Q Q . - I  

= A M . _ 1  - B M . _ 2 -  M(Q, ,_ I  + Q Q n - 2 )  + R S Q . _ 2  + QO.~_I 

= A ° M .  _ 1 - B ° M , , _  2,  ( 7 )  
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with the factors A and B common to eq. (6). We can formulate this relation as 

Y ( O ,  x) = ° y ( o  , x)  = 0 2 - ( M -  Q)O + ( R S -  M Q ) .  (8) 

3.2. TRANSFER MATRIX 

In this case, eq. (2) can be expressed in matrix form: 

M 1) 
S,, S - Q  S, ,-I  " 

After defining the transfer matrix T as 

qI" 

followed by its successive application, one obtains 

(10) 

Note that all the elements o f 'F  n correspond to the matching polynomials of 
the nth entries of the series of graphs relevant to M n as 

S .  - Q .  " 
(12) 

Then, as has been pointed out by Graovac and Babic [28, 29], the matching polynomial 
of  the cyclic polymer °M,, can be expressed as the trace of T", 

o~¢/- = ~vf~ - O~ = Tr('r~). (13) 

It is interesting to observe that the operator polynomial A (eq. (4)) obtained 
from the operator technique is equal to the determinant of the transfer matrix T,  
namely, 

A = d e t ( O E  - T ) ,  (14) 

with the unit matrix E of order 2. 
Graovac and Babic [28,29] proved that the matching polynomial of a 

singly connected periodic polymer °M n can be factorized in terms of the poly- 

(11) 
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nomials A and B used in the recursion relations (eqs. (6) and (7)) for 9¢~ and °9¢~ 
as 

( 2 k -  1)1l: 
°Mn = k=l f i  A - 2~/B cos -2-n J" (15) 

They have pointed out that this relation is in full analogy with that for the characteristic 
polynomial 

= A - c o s  - -  . ( 1 6 )  

k = l  /l 

Namely, all the discussions between eqs. (1) and (14) except eqs. (7), (8), and (13) 
can also be applied to the characteristic polynomial. 

4. Examples  of  singly connected polymers  

Let us expose several examples showing various recursion and factorization 
properties. In table 1, the matching polynomials of the linear and cyclic periodic 
polymers (poly-p-cyclobutadienylene) composed of square rings are given. In this 
case, M is a square graph, R (=S) is a path graph composed of three points, and 
Q is a pair of disjoint points. Then, the transfer matrix becomes 

= I x  4 - 4x  2 + 2 

T ~ x 3 - 2x  

- ( x  3 - 2x) 

--X 2 
(17) 

By using this transfer matrix, the matching polynomials of the linear and cyclic 
polymers can straightforwardly be obtained from eqs. (11) and (13). 

The canonical operator polynomial for describing commonly the recursion 
relations of M n, ~ ,  S,,, and O~ is obtained as 

F(@,x) = d e t ( @ E - T )  = @ 2 - ( x  4 _ 5 x  2 + 2 ) 0  + 2 x  2. (18) 

Then, the rccursion relations of both polymers are written down as 

9¢~(x) = (x 4 - 5x z + 2) 9~_1(x ) - 2xZMn_2(x), (19) 

°9~(x) = (x 4 _ 5x 2 + 2)°~/,,_ l(x) - 2x z °9~_2(x), (20) 

as a special case of eqs. (6) and (7) with 
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A = x  4 - 5 x  2 + 2  and B = 2 x  2. (21) 

Namely,  thc relation (8) is shown to hold in this case. 
Although o ~  can be factored out according to eq. (15) to be n{ 
05~(n = I - I  ( X 4 -  5X2 + 2 ) -  2 q  t~x cOs 

k = l  2 n  ' 
(22) 

!M~ cannot be factored out. 
The characteristic polynomial  of the cyclic graph °Mn is also obtained as (see 

eq. (16) and table 2) 

fi 0 M___M n = . , .~  ( x  4 - 5 x  2 )  - 4x c o s  
2kTr 

k = l  n 
(23) 

T a b l e  2 

C h a r a c t e r i s t i c  p o l y n o m i a l s  o f  l i n e a r ,  c y c l i c  p o l y - p - c y c l o b u t a d i e n y l e n e s  a n d  t he  r e l a t e d  g r a p h s  a) 

n 0 b) 1 2 3 

°M__~ 0 x 4 - 5 x  2 -  4 x  x 8 - 10x  6 + 2 5 x  4 - 16x 2 

1 x 4 - 4 x  2 x 8 - 9 x  6 + 2 0 x  4 - 4 x  z 

__~.,,} 0 x 3 - 2 x  xT-7xS+XOx 3 

_Q.. 1 x 2 x 6 - 5x  4 + 4 x  2 

x 12 _ 15x  lo + 75x s _ 1 3 7 x  6 + 6 0 x  4 _ 16x 3 

x 12 _ 14x  lo + 6 5 x  8 _ 1 0 8 x  6 + 3 6 x  4 

x 11_  12x  9 + 4 5 x  7 - 5 4 x  5 + 8 x  3 

x Io _ 10x  8 + 2 9 x  6 - 2 4 x  4 

a ) G r a p h s  a r e  g i v e n  in  t a b l e  1. b )See  f o o t n o t e  a)  i n  t a b l e  1. 

It is to be noted that the factorization of  the characteristic polynomial  for the 
cyclic polymer  is performed in terms of the recursion relation for the linear polymer,  

M_.~(x) = (x 4 - 5x 2) :~f=n-1(x) - 4x2 ~ - 2 ( x )  • (24) 

Actually, the characteristic polynomial  of  the cyclic polymer  °M n is found to recur 
a s  

= (x 4 - 5 x  2 + 2 x ) o a f  . _  l ( x )  

- (2X 5 - 10X 3 + 4X 2) 0~/n_2(X ) + 8X 3 0~f=n_ 3(X ). ( 2 5 )  

The close relationship among the recursion relations (19), (20), (24), and (25) is 
easily seen by using the operator polynomials  as summarized in table 3. Namely,  
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eq. (25) is found to conta in  eq. (24) i f  they are exp res sed  in te rms  o f  the canon ica l  
ope ra to r  po lynomia l .  

Table 3 

Recursion relations and factorization of the matching and characteristic 
polynomials of linear and cyclic poly-p-cyclobutadienylenes 

Polynomial Recursion relation Factorization 

.Mn a) 

M___,, a) 

o~ 

°M__. 

0 2 - (x 4 - 5x 2 + 2)0 + 2x 2 

0 2 _ ( x  4 _ 5 x a ) O  + 4x 2 

0 2 -  (x 4 - 5 x  2 + 2 ) 0 + 2 x  2 

(0 - 2x)[O 2 - (x 4 - 5x2)0 + 4x 2] 
= 0 3 _ (x 4 - 5x a + 2x)O 2 
+ (2x 5 _ lOx 3 + 4x2)0 - 8x 3 

(x 4 -  5x 2) - 4x cos 2kTr 
k=l ~ el 

As another  example  o f  ma themat ica l ly  interesti~g relations a m o n g  the recursion 
re la t ions  and fac tor iza t ion  o f  P c ( x )  and ~ ( c ( x ) ,  the results  o f  the l inear  and cyc l ic  
c o m b  graphs  are s u m m a r i z e d  in tables  4 and 5. In this case,  the jo in t  a toms  r and 
s co inc ide  and all the d iscuss ions  be t ween  eqs. (1) and (16) are found  to be  val id  

jus t  by  put t ing  R = S = x, ~ = x M~_l, and Q =  0. 
Then ,  the fo l lowing  t ransfer  ma t r ix  express ion  for  5 ~  is obta ined:  

I ~ ' f n l  = ( x 2 - 1 S n  X --X)I~Tt~n-1 1= Sn-1 

Simi la r ly ,  for  the o ther  series o f  p o l y n o m i a l s  we can obta in  the t rans fe r  

ma t r ix  expres s ions  as fol lows:  

lox212x 1 Mn = 0 x 2 - 1  - x  

Sn 0 x 0 

o 11 M n - 1  = opn 1 , 

Sn- I 0 

o li x22xmx22xm X2xX go °M__M_,_ 1 

S_.-1 (° 1 =°T....n 1 . 

0 

*Although this value has nothing to do with the derivation of °M'~ with n _> 1, the °9~f" n value is given 
in the initial vector for the sake of consistency as to the recursion relation given in table 5. 
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Table 5 

Recursion relations and factorization of the matching and 
characteristic polynomials of linear and cyclic comb graphs 

Polynomial Recursion relation F(O,  x) Factorization 

M'. 9c= O 2 -  (x2-  1)O + x  2 (xZ- 1 ) - 2 x  cos - 
n + l  

oM. 

°M__, 

. if= O 2 - ( x  z -  1)O + x :  

°gt'= O 2 - ( x  z -  1)O + x  2 

fll k=} (x z -  1 ) - 2 x  cos 
*=1[ n + l  

" { ( 2 k -  1)~ l .[i1 (x=-l -2xcos J 

or/-= (O - x ) { O  2 -  (x 2 -  1)O + x 2 } (x 2 -  1 ) -  2x cos 2k._._.z 
= O s -  (x z + x -  1)O 2 + (x 3 + x  2 - x ) G - x  3 n 

Due to its simpler structure, both the matching and characteristic polynomials 
of the linear polymer are equivalent and thus have the same mathematical properties, 
as F(&, x) = 5t(O, x) and T = T... The matching polynomial of the cyclic polymer 
recurs in just the same way as the linear polymer °F(O, x) = .if(O, x). Further, it 
is interesting to observe that the relation among the arguments of the cosine functions 
give the zeros of the family of the four polynomials in table 5. 

5. Doubly connected polymer networks 

We have been studying the mathematical structure of the characteristic and 
matching polynomials of a large number of periodic networks, both of linear and 
cyclic structure. Although we have not yet obtained the mathematical proofs for all 
of the findings, several important conjectures for these polynomials were obtained. 
Here, the following findings, in particular for the doubly connected polymers, are 
given without any proof, the details of which will be given in a future paper. 

According to the standard recipe, one can factorize the characteristic polynomial 
°~f~(x) of a cyclic periodic polymer with a pair of bridge bonds connecting every 
pair of neighboring units (M's) [5,6]. Then, °:.....~(x) can formally be expressed as 
the product of the factor fk as 

t ' l  

(x) = A ,  
k = l  

with 
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fk = A - 2B cos kO- 4C cos 2 kO, 

where A, B, and C are polynomials in terms of x. The cos kO comes from the phase 
factor of exp(i kTr/n) = exp(i kO) assigned to a bridge bond in the off-diagonal element 
of the determinant of  fk. 

We have found empirically that the operator polynomial for the recursion 
formula of the characteristic polynomial ~ of a doubly connected linear polymer 
M, has either of the following three forms: 

(O - 1 )  - A ( O  5 - O )  + (2A + B  2 - 3 C ) ( O  4 - O  2 ) I 

i f(O, x) = (O 5 + 1) - (A - 1)(O 4 + O) + (A + B 2 -  3C + 1)(O 3 + 02) ,  II 

( 0  4 + 1) - A ( O  3 + O) + (2A + B 2 -  3C + 1)O 2. III 

Note that 

I = ( O -  1) II = ( 0 2 -  1)III. 

The canonical operator polynomial ° f ( O ,  x) for the recursion relation of the 
characteristic polynomial °M__~(x) of the corresponding cyclic polymer °M,, is not yet 
obtained, but we can conjecture that °F(O,  x) should contain f (@,  x) as the principal 
factor, i.e. 

°5_(0, x) = 0r(O, x). (26) 

As the simplest case, one can choose an ethylene skeleton as the unit to give 
the following polymer network: 

a single row of polyominoes, or a ladder graph [30]. If one is going to extend this 
network to a cyclic structure, there are two possibilities available, namely, a Htickel 
ladder or a MObius ladder [31]. However, our move is to choose a third possibility, 
namely, to define the cyclic fence graph OF n [32], which is bipartite, as in fig. 3. 
One may call the linear ladder the linear fence graph. By choosing this way, one 
can obtain simpler expressions, not only for the recursion relations but also for the 
transfer matrix for the matching polynomials of the series of relevant graphs. Here, 
only the essential results will be given. In table 6, the matching polynomials Of the 
relevant series of graphs, together with the canonical operator polynomial for 
representing the recursion relations, are given. 
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The transfer matrix was obtained as 

o~ 

An 
B~ 
c~ 
D~ 

0 
0 

= 0 

0 
0 

X211 24Xl 0 i1 
- ( x 2 -  1) x 2 -2x  

- x  x -1  
- - X  2 X 2 - - X  - -  

°~_1  

An-1 
Bn- 1 

C~-I 
D~_I 

= °Tn 01 1 
X 2 

X 

x 2 -  1 

This transfer matrix °T for the matching polynomial of the cyclic fence graph was 
found to contain that of the linear ladder graph as 

I A,, 

B,, 

cn 

-1  1 0 
= - ( x 2 - 1 )  X 2 -2x  

- x  x -1  

I An-1 
Bn- 1 (xi  / 

Further, notice that 

det(@ E - T )  = F(@,x)  = @3 _ (x 2_ 2)@2 + x2@ _ I, 

det(@ E - oF) = @ °F(@,x)  = @(@ + I) F(@,x) ,  

where F and OF are the canonical operator polynomials for the linear and cyclic 
fence graphs, respectively, as given in table 6. 

The characteristic polynomial of the cyclic fence graph is straightforwardly 
factorized as 

n 

o~ (x)= I-I f~, 
k=l 

2 

However, we have not yet succeeded in obtaining the recursion relation of the 
characteristic polynomial of this graph. 

Another target for us to aim at for this cyclic fence graph is to factorize out 
the matching polynomial. The zeros of the matching polynomials of the cyclic fence 
graphs are found to form a well-behaved pattem as shown in fig. 4, whereas neither 
of the corresponding figures for the Htickel and MObius ladder graphs shows a 
smooth pattem. This fact is tempting us to find a factorization of °~(x).  
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0 

2 

5 10 n 

Fig. 4. Distribution of the zeros {x > 0 1 °~(x) = 0} of 
the matching polynomial o~ of the cyclic fence graphs. 
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